The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization.

نویسندگان

  • Julia Hoellenriegel
  • Dirk Zboralski
  • Christian Maasch
  • Nathalie Y Rosin
  • William G Wierda
  • Michael J Keating
  • Anna Kruschinski
  • Jan A Burger
چکیده

The CXC chemokine ligand (CXCL12, or stromal cell-derived factor-1 as previously known) plays a critical role for homing and retention of chronic lymphocytic leukemia (CLL) cells in tissues such as the bone marrow (BM). In tissues, stromal cells constitutively secrete and present CXCL12 via cell-surface-bound glycosaminoglycans (GAGs), thereby attracting CLL cells and protecting them from cytotoxic drugs, a mechanism that may account for residual disease after conventional CLL therapy. NOX-A12, an RNA oligonucleotide in L-configuration (Spiegelmer) that binds and neutralizes CXCL12, was developed for interference with CXCL12 in the tumor microenvironment and for cell mobilization. Here, we examined effects of NOX-A12 on CLL cell migration and drug sensitivity. We found that NOX-A12 effectively inhibited CXCL12-induced chemotaxis of CLL cells. In contrast, NOX-A12 increased CLL migration underneath a confluent layer of BM stromal cells (BMSCs) due to interference with the CXCL12 gradient established by BMSCs. In particular, NOX-A12 competes with GAGs such as heparin for CXCL12 binding, leading to the release of CXCL12 from stromal cell-surface-bound GAGs, and thereby to neutralization of the chemokine. Furthermore, NOX-A12 sensitizes CLL cells toward bendamustine and fludarabine in BMSC cocultures. These data demonstrate that NOX-A12 effectively interferes with CLL cell migration and BMSC-mediated drug resistance, and establishes a rationale for clinical development of NOX-A12 in combination with conventional agents in CLL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition

Resistance to targeted tyrosine kinase inhibitors (TKI) remains a challenge for the treatment of myeloid leukemias. Following treatment with TKIs, the bone marrow microenvironment has been found to harbor a small pool of surviving leukemic CD34+ progenitor cells. The long-term survival of these leukemic cells has been attributed, at least in part, to the protective effects of bone marrow stroma...

متن کامل

CXCL12-induced VLA-4 activation is impaired in trisomy 12 chronic lymphocytic leukemia cells: a role for CCL21

Homing to distinct lymphoid organs enables chronic lymphocytic leukemia (CLL) cells to receive pro-survival and proliferative signals. Cytogenetic aberrations can significantly affect CLL cell compartmentalization. Trisomy 12 (tri12) defines a CLL subgroup with specific clinical features and increased levels of the negative prognostic marker CD49d, the α4-subunit of the integrin VLA-4, which is...

متن کامل

Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics.

Spiegelmers are synthetic target-binding oligonucleotides built from non-natural l-nucleotides. Like aptamers, Spiegelmers fold into distinct shapes that bind the targets with high affinity and selectivity. Furthermore, the mirror-image configuration confers plasma stability and immunological passivity. Various Spiegelmers against pharmacologically attractive targets were shown to be efficaciou...

متن کامل

An Unusual Case Report: Occurrence of Renal Cell Carcinoma, Basal Cell Carcinoma and Chronic Lymphocytic Leukemia in a Case of Papillary Thyroid Carcinoma Treated with Radioactive Iodine

The standard therapy for thyroid cancer is total or near total thyroidectomy, followed by the administration of radioactive iodine for remnant ablation or residual disease. Patients with radioiodine therapy are predisposed to second malignant neoplasms in organs such as central nervous system (CNS), breast, prostate, kidney, bone marrow, salivary gland, and digestive tract. Exposure to carcinog...

متن کامل

Increasing Tumor-Infiltrating T Cells through Inhibition of CXCL12 with NOX-A12 Synergizes with PD-1 Blockade.

Immune checkpoint inhibitors promote T cell-mediated killing of cancer cells; however, only a subset of patients benefit from the treatment. A possible reason for this limitation may be that the tumor microenvironment (TME) is immune privileged, which may exclude cytotoxic T cells from the vicinity of cancer cells. The chemokine CXCL12 is key to the TME-driven immune suppression. In this study,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 123 7  شماره 

صفحات  -

تاریخ انتشار 2014